Starting in C++11, two kinds of assignment are supported in the language: copy assignment and move assignment. In this article "assignment" means copy assignment unless explicitly stated otherwise. For information about move assignment, see Move Constructors and Move Assignment Operators (C++).
Both the assignment operation and the initialization operation cause objects to be copied.
Point a, b; . a = b;
You can define the semantics of "copy" for objects of class type. For example, consider this code:
TextFile a, b; a.Open( "FILE1.DAT" ); b.Open( "FILE2.DAT" ); b = a;
The preceding code could mean "copy the contents of FILE1.DAT to FILE2.DAT" or it could mean "ignore FILE2.DAT and make b a second handle to FILE1.DAT." You must attach appropriate copying semantics to each class, as follows:
If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you. Similarly, if you don't declare a copy assignment operator, the compiler generates a member-wise copy assignment operator for you. Declaring a copy constructor doesn't suppress the compiler-generated copy assignment operator, and vice-versa. If you implement either one, we recommend that you implement the other one, too. When you implement both, the meaning of the code is clear.
The copy constructor takes an argument of type ClassName& , where ClassName is the name of the class. For example:
// spec1_copying_class_objects.cpp class Window < public: Window( const Window& ); // Declare copy constructor. Window& operator=(const Window& x); // Declare copy assignment. // . >; int main()
Make the type of the copy constructor's argument const ClassName& whenever possible. This prevents the copy constructor from accidentally changing the copied object. It also lets you copy from const objects.
Compiler-generated copy constructors, like user-defined copy constructors, have a single argument of type "reference to class-name." An exception is when all base classes and member classes have copy constructors declared as taking a single argument of type const class-name&. In such a case, the compiler-generated copy constructor's argument is also const .
When the argument type to the copy constructor isn't const , initialization by copying a const object generates an error. The reverse isn't true: If the argument is const , you can initialize by copying an object that's not const .
Compiler-generated assignment operators follow the same pattern for const . They take a single argument of type ClassName& unless the assignment operators in all base and member classes take arguments of type const ClassName& . In this case, the generated assignment operator for the class takes a const argument.
When virtual base classes are initialized by copy constructors, whether compiler-generated or user-defined, they're initialized only once: at the point when they are constructed.
The implications are similar to the copy constructor. When the argument type isn't const , assignment from a const object generates an error. The reverse isn't true: If a const value is assigned to a value that's not const , the assignment succeeds.
For more information about overloaded assignment operators, see Assignment.