An Introduction to Avidin-Biotin Technology and Options for Biotinylation
Avidin-biotin chemistry represents an enormous toolbox for the biological researcher, owing to the extremely high affinity of biotin for its binding proteins, avidin and streptavidin, as well as the ability to detect the interaction by nonradioactive methods. Early research in the 1920s to 1950s focused primarily on the nutritional implications of biotin and its importance as a coenzyme for carboxylases. Beginning in the early 1970s, however, the avidin-biotin interaction began to be exploited as a research tool, with several techniques being developed in broad areas such as affinity chromatography, blotting, ELISA, hybridization, and others. Specialized techniques, improvements, and new adaptations continue to be developed, limited only by the creativity, vision, and needs of the researcher. It is the intent of this author to provide an overview of avidin-biotin chemistry with particular emphasis on biotinylation reagents that are commonly available. For more detailed reviews, the reader is referred to earlier works (1, 2).
This is a preview of subscription content, log in via an institution to check access.
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 42.79 Price includes VAT (France)
Softcover Book EUR 52.74 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Similar content being viewed by others
Recent advances in the engineering and application of streptavidin-like molecules
Article 01 August 2019
Antibodies to biotin enable large-scale detection of biotinylation sites on proteins
Article 16 October 2017
Preparation of Colloidal Gold Particles and Conjugation to Protein A/G/L, IgG, F(ab′)2, and Streptavidin
Chapter © 2016
References
- Savage, M.D., Mattson, G., Desai, S., Nielander, G. W., Morgensen, S. and Conklin, E.J. (1992) In: Avidin-Biotin Chemistry: A Handbook, Pierce Chemical Company, Rockford, IL. Google Scholar
- Wilchek, M. and Bayer, E.A. (1988) Anal. Biochem. 171, 1–32. ArticlePubMedCASGoogle Scholar
- Green, N.M. (1975) In: Advances in Protein Chemistry, Academic Press, New York. Google Scholar
- Donovan, J.W. and Ross, K.D. (1973) Biochemistry12, 512–517. ArticlePubMedCASGoogle Scholar
- Pai, C.H. and Lichstein, H.C. (1964) Proc. Soc. Exp. Biol. Med. 116, 197–200. PubMedCASGoogle Scholar
- Wei, R.-D. and Wright, L.D. (1964) Proc. Soc. Exp. Biol. Med. 117, 341–344. PubMedCASGoogle Scholar
- Ross, S.E., Carson, S.D. and Fink, L.M. (1986) BioTechniques4, 350–354. Google Scholar
- Green, N.M. (1963) Biochem. J. 89, 609–620. PubMedCASGoogle Scholar
- Cuatrecasas, P. and Wilchek, M. (1968) Biochem. Biophys. Res. Commun. 33, 235–246. ArticlePubMedCASGoogle Scholar
- Bodansky, A. and Bodansky, M. (1970) Experientia26, 327. ArticleGoogle Scholar
- Woolley, D.W. and Longsworth, L.G. (1942) J. Biol. Chem. 142, 285–290. CASGoogle Scholar
- Dayhoff, M. O. (1972) In: Atlas of Protein Sequence and Structure, Vol. 5, National Biomedical Research Foundation, Washington, D.C. Google Scholar
- Green, N.M. (1966) Biochem. J. 101, 774–780. PubMedCASGoogle Scholar
- Chaiet, L. and Wolf, F.J. (1964) Arch. Biochem. Biophys. 106, 1–5. ArticleCASGoogle Scholar
- Chaiet, L., Miller, T.W., Tausig, F. and Wolf, F. J. (1963) Antimicrob. Ag. Chemother. 3, 28–32. Google Scholar
- Sano, T. and Cantor, C.R. (1990) J. Biol. Chem. 265, 3369–3373. PubMedCASGoogle Scholar
- Gitlin, G., Bayer, E.A. and Wilchek, M. (1988) Biochem. J. 250, 291–294. PubMedCASGoogle Scholar
- Merck Index, (1989) 11th Edition, Merck & Co., Rahway, NJ, p. 192. Google Scholar
- Al-Hakim, A.H. and Hull, R. (1986) Nucl. Acid Res. 14, 9965–9976. ArticleCASGoogle Scholar
- Chastain, J.L., Bowers-Komro, D.M. and McCormick, D.B. (1985) J. Chrom. 330, 153–158. ArticleCASGoogle Scholar
- Lin, H.J. and Kirsch, J.F. (1977) Anal. Biochem. 81, 442–446. ArticlePubMedCASGoogle Scholar
- McCormick, D.B. and Roth, J.A. (1970) Meth. Enzvmol. 18A, 418–424. ArticleGoogle Scholar
- Mock, D.M., Langford, G., DuBois, D., Criscimagna, N. and Horowitz, P. (1985) Anal. Biochem. 151, 178–181. ArticlePubMedCASGoogle Scholar
- Green, N.M. (1965) Biochem. J. 94, 23c - 24c. PubMedCASGoogle Scholar
- Wilchek, M. and Bayer, E.A. (1988) Anal. Biochem. 171, 1–32. ArticlePubMedCASGoogle Scholar
- Ellman, G.L. (1959) Arch. Biochem. Biophys. 82, 70–77. ArticlePubMedCASGoogle Scholar
- Riddles, P.W., Blakeley, R.L. and Zerner, B. (1979) Anal. Biochem. 94, 75–81. ArticlePubMedCASGoogle Scholar
- On, G.A. (1981) J. Biol. Chem. 256, 761–766. Google Scholar
- Lomant, A.J. and Fairbanks, G. (1976) J. Mol. Biol. 104, 243–261. ArticlePubMedCASGoogle Scholar
- Staros, J.V. (1988) Account Chem. Res. 21, 435–441. ArticleCASGoogle Scholar
- Cuatrecasas, P. and Parikh, I. (1972) Biochemistry11, 2291–2299. ArticlePubMedCASGoogle Scholar
- Carlsson, J., Drevin, H. and Axen, R. (1978) Biochem. J. 173, 723–737. PubMedCASGoogle Scholar
- Partis, M.D., Griffiths, D.G., Roberts, G.C. and Beechey, R.B. (1983) J. Prot. Chem. 2, 263–277. ArticleCASGoogle Scholar
- Abdella, P.M., Smith, P.K. and Royer, G.P. (1979) Biochem. Biophys. Res. Comm. 87, 734–742. ArticlePubMedCASGoogle Scholar
- Hoffman, W.L. and O’Shannessy, D.J. (1988)J. Immunol. Meth. 112, 113–120. Google Scholar
- O’Shannessy, D.J. and Quarles, R.H. (1985) J. Appl. Biochem. 7, 347–355. PubMedGoogle Scholar
- O’Shannessy, D.J., Voorstad, P.J. and Quarles, R.H. (1987) Anal. Biochem. 163. 204–209. ArticlePubMedGoogle Scholar
- Heitzmann, H. and Richards, F.M. (1974) Proc. Natl. Acad. Sci. USA71, 3537–3541. ArticlePubMedCASGoogle Scholar
- Skutelsky, E. and Bayer, E.A. (1983) J. Cell Biol. 96, 184–190. ArticlePubMedCASGoogle Scholar
- Roffman, E.. Meromsky, L., Ben-Hur, H., Bayer. E.A. and Wilchek, M. (1986) Biochem. Biophvs. Res. Comm. 136, 80–85. ArticleCASGoogle Scholar
- Bayer. E.A., Ben-Hur, H. and Wilchek, M. (1988) Anal. Biochem. 170, 271–281. ArticlePubMedCASGoogle Scholar
- Grabarek, Z. and Gergely. J. (1990) Anal. Biochem. 185, 131–135. ArticlePubMedCASGoogle Scholar
- Rosenberg, M.B., Hawrot, E. and Breakefield, X.O. (1986) J. Neurochem. 46. 641–648. ArticlePubMedCASGoogle Scholar
- Gilles, M.A., Hudson, A.Q. and Borders, Jr., C.I. (1990) Anal. Biochem. 184. 244–248. ArticlePubMedCASGoogle Scholar
- Stuchbury, T.. Shipton, M.. Norris, R. and Malthouse, J.P.G. (1975) Biochem. J. 151, 417–432. PubMedCASGoogle Scholar
- Duncan, R.J.S., Weston, P.D. and Wrigglesworth, R. (1983) Anal. Biochem. 132, 68–73. ArticlePubMedCASGoogle Scholar
- Jue, R., Lambert, J.M., Pierce, L.R. and Traut, R.R. (1978) Biochemistry17, 5399–5405. ArticlePubMedCASGoogle Scholar
- Yoshitake, S., Yamada, Y., Ishikawa, E. and Masseyeff, R. (1979) Eau: J. Biochem. 101. 395–399. ArticleCASGoogle Scholar
- Crestfield, A.M., Moore, S. and Stein, W.H. (1963) J. Biol. Chem. 238, 622–627. PubMedCASGoogle Scholar
- Gurd. F.R.N. (1967) Methods Enzymol. 11, 532–541. ArticleCASGoogle Scholar
- Means. G.E. and Feeney. R.E. (1971) In: Protein Modification, Holden-Day, San Francisco, CA, p. 112. Google Scholar
- Das. M. and Fox, C.F. (1979) Ann. Rer. Biophvs. Bioeng. 8, 165–193. ArticleCASGoogle Scholar
- Staros, J.V. (1980) TIBS, Dec., 320–322. Google Scholar
- Forster. A.C., McInnes. J.L., Skingle, D.C. and Symons, R.H. (1985) Nucl. Acids Res. 13, 745–761. ArticlePubMedCASGoogle Scholar
- Keller, G.H., Huang, D.-P. and Manak. M.M. (1989) Anal. Biochem. 177, 392–395. ArticlePubMedCASGoogle Scholar
- M. Dean Savage